

EXAMPLES MANUAL

All rights reserved. No part of this documentation may be copied, transcribed, stored in a data backup system or translated into any language without Fagor Automation's explicit consent.
The information described in this manual may be modified for technical reasons. FAGOR AUTOMATION S. COOP. Reserves the right to modify the contents of this manual without having to communicate such modifications.
Microsoft and Windows are registered trademarks of Microsoft Corporation USA. The other commercial trademarks belong to their respective owners.

The content of this manual and its validity for the product described here has been verified. Even so, involuntary errors are possible, thus no absolute match is guaranteed. Anyway, the contents of the manual is periodically checked making and including the necessary corrections in a future edition.
The examples described in this manual are for learning purposes. Before using them in industrial applications, they must be properly adapted making sure that the safety regulations are fully met.

## INDEX

CHAPTER 1 CONTOURS
1.1 INTRODUCTION ..... 1
1.2 CREATING A PART-PROGRAM ..... 1
1.3 EXAMPLE: PROFILE MILLING USING 12 POINTS ..... 2
1.3.1 POSITIONING 1 .....  3
1.3.2 PROFILE 1 ..... 4
1.3.3 PROGRAM SIMULATION ..... 5
1.4 EXAMPLE: PROFILE MILLING USING THE PROFILE EDITOR. ..... 6
1.4.1 PROFILE MILLING ..... 7
1.4.2 PROGRAM SIMULATION ..... 8
CHAPTER 2 MACHINING CANNED CYCLES
2.1 CREATING PROGRAMS WITH MACHINING CANNED CYCLES ..... 9
2.2 EXAMPLE: USING MACHINING CANNED CYCLES ..... 10
2.2.1 PROFILE MILLING ..... 11
2.2.2 PROFILE MILLING (milling prior to drilling) ..... 13
2.2.3 SIMPLE POCKET (top pocket) ..... 15
2.2.4 SIMPLE POCKET (bottom pocket) ..... 16
2.2.5 CIRCULAR POCKET 1 ..... 17
2.2.6 DRILLING DEFINITION ..... 18
2.2.7 PROGRAM SIMULATION ..... 21
CHAPTER 3 COORDINATE TRANSFORMATION CYCLES
3.1 EXAMPLE: USING THE MIRROR IMAGE CYCLE ..... 24
3.1.1 PROFILE MILLING ..... 25
3.1.2 RECTANGULAR POCKET ..... 27
3.1.3 DRILLING 1 (Angular repetition) ..... 28
3.1.4 DRILLING 1 (Linear repetition) ..... 30
3.1.5 DRILLING 1 (angular repetition) ..... 32
3.1.6 MIRROR IMAGE ..... 34
3.1.7 PROGRAM SIMULATION ..... 35
3.2 EXAMPLE: USING THE THREE MIRROR IMAGE COMMANDS ..... 36
3.2.1 PROFILE MILLING ..... 37
3.2.2 MIRROR IMAGES ..... 39
3.2.3 PATTERN ROTATION ..... 40
3.2.4 PROFILE MILLING ..... 41
3.2.5 PROGRAM SIMULATION ..... 43
3.3 EXAMPLE: PATTERN ROTATION ..... 44
3.3.1 PROFILE MILLING ..... 45
3.3.2 PATTERN ROTATION ..... 47
3.3.3 CIRCULAR POCKETS ..... 48
3.3.4 DRILLING WITH LINEAR REPETITION ..... 49
3.3.5 PATTERN ROTATION ..... 51
3.3.6 PROGRAM SIMULATION ..... 52
CHAPTER 4 2D CYCLES
4.1 EXAMPLE: JOINT ..... 53
4.1.1 2D PROFILE POCKET ..... 54
4.1.2 CIRCULAR POCKETS ..... 56
4.1.3 PROGRAM SIMULATION ..... 57
4.2 EXAMPLE: CAM ..... 58
4.2.1 2D PROFILE POCKETS ..... 59
4.2.2 DRILLING ..... 64
4.2.3 CIRCULAR POCKET 1 ..... 65
4.2.4 PROGRAM SIMULATION ..... 66
5.1 INTRODUCTION ..... 67
5.2 EXAMPLE: TOROID. ..... 68
5.2.1 3D PROFILE POCKETS ..... 69
5.2.2 PROGRAM SIMULATION ..... 73
5.3 EXAMPLE: IGLOO ..... 74
5.3.1 3D PROFILE POCKETS ..... 75
5.3.2 PROGRAM SIMULATION ..... 78
FAGOR

## CONTOURS

### 1.1 INTRODUCTION

Programming in conversational mode consists in filling in a number of cycles depending the machining operations to perform. These cycles may be stored in a program or executed without storing them. Here are some examples of machining operations normally used with this method.

### 1.2 CREATING A PART-PROGRAM

To create a part-program, we will proceed as follows starting from the main screen:


Pressing the [PPROG] key gives access to file management. Once on this screen, we move the red cursor to "CREATE NEW PART" and press [PPROG]. At this time, the CNC requests a part number and a comment. We confirm both data with the [ENTER] key.


### 1.3 EXAMPLE: PROFILE MILLING USING 12 POINTS

To machine the contour of this figure:


We will use the following tools:

| Operations | Tools |
| :---: | :---: |
| Positioning |  |
| Outside profile machining (roughing) | Flat endmill Ø6 T1 D1 |
| Outside profile machining (finishing) | Flat endmill Ø4 T2 D2 |

After creating the part-program, we will make this part following these steps:

## FAGOR

### 1.3.1 POSITIONING 1

To go into the POSITIONING cycle. we press:


There are two levels in the POSITIONING CYCLE, they may be toggled pressing [LEVEL CYCLE] or [PAGEUP/PAGEDOWN]. The first level offers the choice of programming the positioning in two movements:

1. $Z X Y$
2. $X Y Z$
3. STRAIGHT XYZ

These three options may be changed using the [TWO-COLOR] key and are confirmed with the [ENTER] key. Once the movement type has been chosen, we indicate each coordinate value in the corresponding box always confirming each value with [ENTER]:

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| On | Positioning first in $Z$ and then in the XY plane. |  |
| X | Rapid feedrate | 0 |
| Y | Positioning on the X axis | 0 |
| Z | Positioning on the Y axis | 20 |


| MACHINING CONDITIONS |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| P | Spindle clockwise |  |
| T | Number of the tool to be used | 1 |
| D | Tool offset | 1 |

Once the cycle has been filled in, we press [PPROG] to insert it in the previously created program. Once on the PART-PROGRAMS screen, the bottom of the CNC screen shows the following message:

## SELECT POSITION TO INSERT POSITIONING 1

We press [ENTER] to insert the cycle in the program:


### 1.3.2 PROFILE 1

After inserting the POSITIONING 1 cycle, we fill in the PROFILE 1 cycle. To do that, we must press [F3].


The first data we must enter are the starting (initial) X and Y . Press [ENTER] to confirm each data:

| STARTING POSITION |  |  |
| :---: | :--- | :---: |
| X 1 | Starting point in X | 80 |
| Y 1 | Starting point in Y | 0 |

This starting point corresponds to the positioning prior to the contour's entry coordinate where the radius of the tool being used is compensated for.

In the next window, we fill in the different geometry points, up to 12 coordinates; we could add a corner rounding, or a chamfer at each point using the [TWO-COLOR] key:


When using less than 12 geometry points, we must repeat the last coordinate to indicate to the control that the contour has no more points.

After defining the geometry points, we fill in the section for the general conditions of the cycle:

CNC 8055
MC

Ref. 0601

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| Xn | Last point where the tool must return along the X axis. | 80 |
| Yn | Last point where the tool must return along the Y axis. | 0 |
| Zs | Safety coordinate | 2 |
| Z | Surface coordinate | 0 |
| P | Total depth in absolute coordinates | 20 |
| I | Value of each pass | 3 |
| Fz | In feed | 100 |

In the third part of the cycle, we program the machining conditions, both for roughing and finishing also including the tools:

| ROUGHING |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| T | Clockwise turning direction |  |
| T | Number of the tool to be used | 1 |
| D | Tool offset |  |
| Right hand tool radius compensation |  |  |


| FINISHING |  |  |
| :---: | :---: | :---: |
| F | Finishing feedrate | 1000 |
| S | RPM | 1500 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 2 |
| D | Tool offset | 2 |
| $\delta$ | Finishing stock | 1 |

If we do not wish to perform any of these two operations, we just program zero values in the corresponding section. Tool compensation is applied in the roughing section. To change this window, we can press the [TWO-COLOR] key.

Once the cycle is completed, we proceed the same way as with the positioning cycle; i.e. pressing [PPROG] to insert it in the desired position of the program and pressing [ENTER].

### 1.3.3 PROGRAM SIMULATION

1. We position the red cursor on the first cycle of the program, in this case POSITIONING 1, and then press [GRAPHICS]. It then displays the simulation screen:

2. We press [RESET] and then [START].


CNC 8055 MC

### 1.4 EXAMPLE: PROFILE MILLING USING THE <br> PROFILE EDITOR

We will carry out a machining operation similar to the previous one using the PROFILE MILLING cycle


We will use the following tools:

| Operations | Tools |
| :---: | :---: |
| Positioning |  |
| Profile milling (roughing) | Flat endmill Ø6 T1 D1 |
| Profile milling (finishing) | Flat endmill Ø4 T2 D2 |

After creating the part-program and the positioning cycle like in the previous example, we make this part by following these steps:

## FAGOR

### 1.4.1 PROFILE MILLING

After inserting the POSITIONING 1 cycle, we fill in the PROFILE MILLING cycle. To do that, we must press [F3]. Then, we press [LEVEL CYCLE] to switch from level 1 to level 2, where we can draw the profile to be contoured using the drawing assistant PROFILE EDITOR.

The advantage of the PROFILE MILLING cycle is that we draw the geometry directly and, therefore, the number of points is unlimited, which does not happen with the first level that only allows a maximum of 12 points.


The first data we must enter is the starting (initial) X and Y , in this case:

| STARTING POSITION |  |  |
| :---: | :---: | :---: |
| X | Starting point on the X axis | -25 |
| Y | Starting point on the Y axis | -25 |
|  | Profile | 1 |

We assign a number to the drawing to be made in the "PROFILE" box and press [RECALL] This key gives access to the drawing screen PROFILE EDITOR. Once on this screen, we draw the desired geometry.

PROFILE PROGRAMMING

| STARTING POINT | X1: 0 | Y1: 0 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| STRAIGHT | X2: 42 | Y2: 0 |  |  |
| STRAIGHT | $\alpha: 45$ |  |  |  |
| COUNTERCLOCKWISE | X2: 124 | Y2: 12 | XC: 124 | YC: 82 |
| ARC |  |  |  |  |
| STRAIGHT | X2: 180 | Y2: 12 |  |  |
| STRAIGHT | X2: 200 | Y2:32 |  |  |
| STRAIGHT | X2: 200 | Y2: 134 |  |  |
| STRAIGHT | X2: 0 | Y2: 134 |  |  |
| STRAIGHT | X2: 0 | Y2: 82 |  |  |
| STRAIGHT | X2: 114 | Y2: 82 |  |  |
| CLOCKWISE ARC | X2: 170 | Y2: 82 | XC: 142 | YC: 82 |
| CLOCKWISE ARC | XC:124 | YC: 82 | R: 46 | TANG: YES |
| STRAIGHT | X2: 0 | Y2: 10 | $\alpha: 30.14$ |  |
| STRAIGHT | X2: 0 | Y2: 0 |  |  |

Geometry of the example in the PROFILE EDITOR


When the drawing is completed, we press [END] and the CNC will request a comment for that drawing. Once we confrimed this comment pressing [ENTER], we go back to the PROFILE MILLING cycle to fill in the rest of the data.

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| $Z s$ | Safety Z coordinate | 2 |
| $Z$ | Surface coordinate | 0 |
| $P$ | Total depth in absolute coordinates | 20 |
| I | Value of each pass | 3 |
| Fz | In feed | 100 |


| ROUGHING |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| T | Clockwise turning direction |  |
| T | Number of the tool to be used | 1 |
| D | Tool offset | 1 |
| Right hand tool radius compensation |  |  |


| FINISHING |  |  |
| :---: | :---: | :---: |
| F | Finishing feedrate | 1000 |
| S | RPM | 1000 |
| T | Clockwise turning direction |  |
| T | Number of the tool to be used | 2 |
| D | Tool offset | 2 |
| $\delta$ | Finishing stock | 0.2 |

Once the cycle is completed, we proceed the same way as with the positioning cycle; i.e. pressing [PPROG] to insert it in the desired position of the program and pressing [ENTER].

### 1.4.2 PROGRAM SIMULATION

1. We position the red cursor on the first cycle of the program, in this case POSITIONING 1, and then press [GRAPHICS].
2. Then, we press [RESET] and then [START].


## MACHINING CANNED CYCLES

### 2.1 CREATING PROGRAMS WITH MACHINING CANNED CYCLES

A canned cycle is a machining operation that is inside the outside geometry of the part, requires a roughing operation and sometimes also a finishing operation. The conversational mode offers the following cycles:

- Surface milling
- Slot milling
- 2D and 3D pockets
- Rectangular and circular boss
- Rectangular and circular pocket
- Boring
- Reaming
- Tapping
- Drilling

FAGOR

### 2.2 EXAMPLE: USING MACHINING CANNED CYCLES

To make the following part:


We will use the following tools:

| Operations | Tools |
| :---: | :---: |
| Outside profile machining (roughing) | Table Ø50 T3 D3 |
| Outside profile machining (finishing) | Flat endmill Ø4 T2 D2 |
| Milling before drilling | End mill Ø30 T6 D6 |
| Machining of the pockets. | Flat endmill Ø6 T1 D1 |
| Drilling | Drill bit Ø10 T4 D4 |

After creating the part-program and performing the positioning, we make this part by following these steps:

## FAGOR

### 2.2.1 PROFILE MILLING

To fill in the PROFILE MILLING cycle, we press [F3]. Then, we press [LEVEL CYCLE] to switch from level 1 to level 2 , where we can draw the profile to be contoured using the PROFILE EDITOR.


We select the starting point in XY coordinates, assign a number to the drawing and press [RECALL]:

| STARTING POSITION |  |  |
| :---: | :---: | :---: |
| X | Starting point on the X axis | -140 |
| Y | Starting point on the Y axis | -50 |
|  | Profile | 2 |

Once on the screen of the PROFILE EDITOR, we draw the desired geometry:

PROFILE PROGRAMMING

| STARTING POINT | X1: -110 | Y1: -20 |  |  |
| :---: | :---: | :---: | :---: | :---: |
| STRAIGHT | X2: -60 | Y2: -20 |  |  |
| COUNTERCLOCKWISE ARC | X2: 60 | Y2: -20 | XC: 0 | YC: 0 |
| STRAIGHT | X2: 90 | Y2: -20 |  |  |
| STRAIGHT | X2: 90 | Y2: 50 |  |  |
| COUNTERCLOCKWISE ARC | X2: 30 | Y2: 110 | XC: 30 | YC: 50 |
| STRAIGHT | X2: -90 | Y2: 110 |  |  |
| STRAIGHT | X2: -110 | Y2: 80 |  |  |
| STRAIGHT | X2: -110 | Y2: -20 |  |  |

Geometry of the example in the PROFILE EDITOR


After drawing the contour of the figure, we save the drawing in the PROFILE MILLING cycle and fill in the rest of the data:

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| Zs | Safety Z coordinate | 2 |
| Z | Surface coordinate | 0 |
| P | Total depth in absolute coordinates | 30 |
| I | Value of each pass | 3 |
| Fz | In feed | 100 |


| ROUGHING |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| T | Clockwise turning direction |  |
| T | Number of the tool to be used | 3 |
| D | Tool offset | 3 |
| Right hand tool radius compensation |  |  |


| FINISHING |  |  |
| :---: | :---: | :---: |
| F | Finishing feedrate | 1000 |
| S | RPM | 1000 |
| T | Clockwise turning direction |  |
| T | Number of the tool to be used | 2 |
| D | Tool offset | 2 |
| $\delta$ | Finishing stock | 0.2 |

CNC 8055 MC

### 2.2.2 PROFILE MILLING (milling prior to drilling)

To mill for drilling, we use the same cycle as for the outside contour, but this time you draw the path of the tool center for that previous milling.

Same as before, to fill in the PROFILE MILLING cycle, we press [F3]. Then, we press [LEVEL CYCLE] to switch from level 1 to level 2, where we can draw the profile to be contoured using the PROFILE EDITOR.


We select the starting point in XY coordinates, assign a number to the drawing and press [RECALL]:

| STARTING POSITION |  |  |
| :---: | :---: | :---: |
| X | Starting point on the X axis | -140 |
| Y | Starting point on the Y axis | 95 |
|  | Profile | 3 |

Once on the screen of the PROFILE EDITOR, we draw the desired geometry:

PROFILE PROGRAMMING

| STARTING POINT | X1: -110 | Y1: 95 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| STRAIGHT | X2: 30 | Y2: 95 |  |  |
| CLOCKWISE ARC | X2: 75 | Y2: 50 | XC: 30 | YC: 50 |
| STRAIGHT | X2: 75 | Y2: -20 |  |  |

Geometry of the example in the PROFILE EDITOR


After drawing the contour of the figure, we save the drawing in the PROFILE MILLING cycle Then, besides filling in the rest of data, we will have to indicate that the tool is not to be compensated:

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| $Z s$ | Safety Z coordinate | 2 |
| $Z$ | Surface coordinate | 0 |
| $P$ | Total depth in absolute coordinates | 10 |
| I | Value of each pass | 3 |
| Fz | In feed | 100 |


| ROUGHING |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| T | Clockwise turning direction |  |
| T | Number of the tool to be used | 6 |
| D | Tool offset | 6 |
| Without tool compensation |  |  |


| FINISHING |  |  |
| :---: | :---: | :---: |
| F | Finishing feedrate | 1000 |
| S | RPM | 1000 |
| T | Clockwise turning direction |  |
| T | Number of the tool to be used | 6 |
| D | Tool offset | 6 |
| $\delta$ | Finishing stock | 0.2 |

CNC 8055 MC

### 2.2.3 SIMPLE POCKET (top pocket)

To fill in the SIMPLE POCKET cycle, we press [F7].


The position of the pocket may be defined in two ways, from the bottom left corner, or from the center; the [TWO-COLOR] key toggles this option.

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
|  | Corner where the machining operation begins |  |
| X | Starting point on the X axis | -110 |
| Y | Starting point on the Y axis | -20 |
| L | Total length in X | 50 |
| H | Total length in Y | 75 |
| Zs | Safety Z coordinate | 2 |
| Z | Surface coordinate | 0 |
| P | Total depth in absolute coordinates | 15 |
| I | Value of each pass | 3 |
| Fz | In feed | 100 |


| MACHINING CONDITIONS |  |  |
| :---: | :---: | :---: |
|  |  |  |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| T | Clockwise turning direction |  |
| T | Number of the tool to be used | 1 |
| D | Tool offset | 1 |
| T | Clockwise machining |  |
| $\Delta$ | Finishing pass | 0 |
| $\delta$ | Finishing stock | 0.2 |

### 2.2.4 SIMPLE POCKET (bottom pocket)

This second pocket is programmed the same way as the previous one.


The dimensions of this pocket are different from the previous one, therefore, the previous one may be changed by simply recalling it from the program using the [RECALL] key and changing the starting $X$ and Y , the length L and the width H :

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
|  | Corner where the machining operation begins |  |
| X | Starting point on the X axis | -100 |
| Y | Starting point on the Y axis | -10 |
| L | Total length in X | 30 |
| H | Total length in Y | 55 |
| Zs | Safety Z coordinate | 2 |
| Z | Surface coordinate | 0 |
| P | Total depth in absolute coordinates | 30 |
| I | Value of each pass | 3 |
| Fz | In feed | 100 |


| MACHINING CONDITIONS |  |  |
| :---: | :---: | :---: |
|  |  |  |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| T | Clockwise turning direction |  |
| T | Number of the tool to be used | 1 |
| D | Tool offset | 1 |
| Clockwise machining | Finishing pass |  |
| $\Delta$ | Finishing stock | 0 |
| $\delta$ |  | 0.2 |

After this, we press the [PROG] key and the CNC will offer the choice to replace the cycle or inserted underneath. To change sides, we press the cursor arrows:


### 2.2.5 CIRCULAR POCKET 1

To go into the CIRCULAR POCKET 1 cycle, we press [F7]. Then, we press [LEVEL CYCLE] until reaching level 3.


The CIRCULAR POCKET 1 cycle always begins at its center. We filled in the cycle data the same way as in the previous cycles:

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| Xc | Pocket center in X | 0 |
| Yc | Pocket center in Y | 0 |
| R | Pocket radius | 40 |
| Zs | Safety Z coordinate | 2 |
| Z | Surface coordinate | 30 |
| P | Total depth in absolute coordinates | 3 |
| I | Value of each pass | 100 |
| Fz | In feed |  |


| ROUGHING |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| T | Clockwise turning direction |  |
| T | Number of the tool to be used | 1 |
| D | Tool offset | 1 |
| $\beta$ | Penetrating angle | 90 |
| $\square$ | Clockwise machining |  |
| $\Delta$ | Roughing pass | 0 |


| FINISHING |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| r | Clockwise turning direction |  |
| T | Number of the tool to be used | 2 |
| D | Tool offset | 2 |
| $\theta$ | Tool penetrating angle when finishing | 90 |
| $\boldsymbol{T}$ | Clockwise machining |  |
| $\delta$ | Finishing stock | 0.2 |
| $\delta z$ | Excess material in Z | 0.1 |
| N | Number of finishing passes in Z | 1 |

CNC 8055 MC

Ref. 0601

### 2.2.6 DRILLING DEFINITION

To go into the DRILLING 1 cycle, we press:


When defining the drilling, we begin from the holes at the bottom right side of the part. The first hole is drilled at X 75 Y -10

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| X | X coordinate of the first hole | 75 |
| Y | Y coordinate of the first hole | -10 |
| Zs | Safety Z coordinate | 2 |
| Z | Surface coordinate | 0 |
| P | Total depth in absolute coordinates | 30 |
| I | Value of each pass | 5 |
| t | Dwell at the bottom | 0 |


| PENETRATION |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 600 |
| S | RPM | 750 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 4 |
| D | Tool offset | 4 |



Once the first hole is programmed, we repeat it linearly pressing the [LINEAR REPETITION] key.


In this cycle, we can enter the necessary data for the linear repetition of different shapes by simply changing the window mode. To toggle this window, we press the [TWO-COLOR] key:

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| X 1 | X coordinate of the first hole | 75 |
| Y 1 | Y coordinate of the first hole | -10 |
| 1 | Linear repetition method 1 |  |
| Xn | X coordinate of the last hole | 75 |
| Yn | Y coordinate of the last hole | 30 |
| N | Number of positions | 3 |


| DRILLING |  |  |
| :---: | :---: | :---: |
| Zs | Safety Z coordinate | 2 |
| Z | Surface Z coordinate | 0 |
| P | Total pocket depth | 30 |
| t | Dwell at the bottom (seconds) | 0 |
| I | Penetration step | 5 |
| F | Machining feedrate | 600 |
| S | RPM | 750 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 4 |
| D | Tool offset | 4 |

Once the linear drilling has been programmed, we program the angular drilling. To do this, we press the [POLAR REPETITION] key.


In this cycle, we can also change the data that the CNC needs depending on what we (the programmers) have, using the [TWO-COLOR] key.

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| X 1 | X coordinate of the first hole | 75 |
| Y 1 | Y coordinate of the first hole | 50 |
| 1. | Angular repetition method 1 |  |
| X | X coord. of the arc center | 50 |
| Yc | Y coord. of the arc center | 4 |
| N | Number of positions | 67.5 |
| $\tau$ | Angular distance of the last cycle, referred to the horizontal axis X |  |

CNC 8055

| DRILLING |  |  |
| :---: | :---: | :---: |
| Zs | Safety Z coordinate | 2 |
| Z | Surface Z coordinate | 0 |
| P | Total pocket depth | 30 |
| t | Dwell at the bottom (seconds) | 0 |
| I | Penetration step | 5 |
| F | Machining feedrate | 600 |
| S | RPM | 750 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 4 |
| D | Tool offset | 4 |

The last row of holes is programmed the same way as the first one; i.e. using the [LINEAR REPETITION] key.


| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| X 1 | X coordinate of the first hole | 30 |
| Y 1 | Y coordinate of the first hole | 95 |
| $1 / 5$ | Linear repetition method 1 |  |
| Xn | X coordinate of the last point | -70 |
| Yn | Y coordinate of the last point | 95 |
| N | Number of positions | 6 |


| MACHINING |  |  |
| :---: | :---: | :---: |
| Zs | Safety Z coordinate | 2 |
| Z | Surface Z coordinate | 0 |
| P | Total pocket depth | 30 |
| t | Dwell at the bottom (seconds) | 0 |
| I | Penetration step | 5 |
| F | Machining feedrate | 750 |
| S | RPM |  |
| P | Clockwise turning direction | 4 |
| T | Number of the tool to be used | 4 |
| D | Tool offset |  |

### 2.2.7 PROGRAM SIMULATION

1. We position the red cursor on the first cycle of the program and then press [GRAPHICS].
2. Then, we press [RESET] and then [START].


## FAGOR



CNC 8055
MC

## COORDINATE <br> TRANSFORMATION CYCLES

Coordinate transformation cycles are those where, based on an original program, a function is applied to repeat the same geometry differently. There are four types of functions for coordinate transformation:

- Mirror image.
- Scaling cycle
- Pattern rotation
- Part zero offset cycle

In conversational mode, these cycles are within the ISO cycle and may be toggled using the [LEVELCYCLE] key.

### 3.1 EXAMPLE: USING THE MIRROR IMAGE CYCLE

The following example uses the mirror image cycle for drilling.


We will use the following tools:

| Operations | Tools |
| :---: | :---: |
| Milling of the outside profile | Table Ø50 T3 D3 |
| Inside rectangular pocket | End mill Ø12 T5 D5 |
| Right holes | Drill bit Ø10 T4 D4 |

After creating the part-program and performing the positioning, we make this part by following these steps:

## FAGOR

### 3.1.1 PROFILE MILLING

To fill in the PROFILE MILLING cycle, we press [F3]. Then, we press [LEVEL CYCLE] to switch from level 1 to level 2, where we can draw the profile to be contoured using the PROFILE EDITOR.


We select the starting point in XY coordinates, assign a number to the drawing and press [RECALL]:

| STARTING POSITION |  |  |
| :---: | :---: | :---: |
| X | Starting point on the X axis | 0 |
| Y | Starting point on the Y axis | -75 |
|  | Profile | 4 |

Once on the screen of the PROFILE EDITOR, we draw the desired geometry:

PROFILE PROGRAMMING
COORDINATE TRANSFORMATION CYCLES

| STARTING POINT | X1: 0 | Y1: -45 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| STRAIGHT | X2: 35 | Y2: -45 |  |  |
| COUNTERCLOCKWISE | X2: 65 | Y2: -15 | XC: 35 | YC: -15 |
| ARC |  |  |  |  |
| STRAIGHT | X2: 65 | Y2: 15 |  |  |
| COUNTERCLOCKWISE | X2: 35 | Y2: 45 | XC: 35 | YC: 15 |
| ARC |  |  |  |  |
| STRAIGHT | X2: -35 | Y2: 45 |  |  |
| COUNTERCLOCKWISE | X2: -65 | Y2: 15 | XC: -35 | YC: 15 |
| ARC | X2: -65 | Y2: -15 |  |  |
| STRAIGHT | X2: -35 | Y2: -45 | XC: -35 | YC: -15 |
| COUNTERCLOCKWISE |  |  |  |  |
| ARC | X2: 0 | Y2: -45 |  |  |

Geometry of the example in the PROFILE EDITOR


After drawing the contour of the figure, we save the drawing in the PROFILE MILLING cycle and fill in the rest of the data:

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| $Z s$ | Safety Z coordinate | 2 |
| $Z$ | Surface coordinate | 0 |
| $P$ | Total depth in absolute coordinates | 20 |
| I | Value of each pass | 2 |
| Fz | In feed | 100 |


| ROUGHING |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 3 |
| D | Tool offset | 3 |
| Right hand tool radius compensation |  |  |


| FINISHING |  |  |
| :---: | :---: | :---: |
| F | Finishing feedrate | 1000 |
| S | RPM | 1000 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 2 |
| D | Tool offset | 2 |
| $\delta$ | Finishing stock | 0.2 |

CNC 8055
MC

### 3.1.2 RECTANGULAR POCKET

To fill in the RECTANGULAR POCKET cycle, we press [F7]. Then, press [LEVEL CYCLE] until reaching level 2.


This cycle offers the chance to round the corners with a radius larger than that of the tool being used or to chamfer them.

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| $\times$ | Position where the machining operation begins |  |
| X | Starting point on the X axis | 0 |
| Y | Starting point on the Y axis | 0 |
| L | Total length in X | 90 |
| H | Total length in Y | 50 |
| то | Pocket inclination angle | 0 |
| \% | Corner finishing |  |
| r | Corner blending radius | 10 |
| Zs | Safety Z coordinate | 2 |
| Z | Surface coordinate | 0 |
| P | Total depth in absolute coordinates | 20 |
| 1 | Value of each pass | 3 |
| Fz | In feed | 100 |


| ROUGHING |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| T | Clockwise turning direction |  |
| T | Number of the tool to be used | 5 |
| D | Tool offset | 5 |
| $\beta$ | Penetrating angle | 90 |
| $\square$ | Clockwise machining |  |
| $\Delta$ | Roughing pass | 0 |


| FINISHING |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 2 |
| D | Tool offset | 2 |
| $\theta$ | Tool penetrating angle when finishing | 90 |
| Cu | Clockwise machining |  |
| $\delta$ | Finishing stock | 0.2 |
| $\delta \mathbf{N}$ | Excess material in Z | 0.1 |
| N | Number of finishing passes in Z | 1 |

CNC 8055 MC

Ref. 0601

### 3.1.3 DRILLING 1 (Angular repetition)

To go into the DRILLING 1 cycle, we press:


When defining the drilling, we begin from the hole at the bottom right side of the part. This hole will be positioned at X35 Y-35:

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| X | X coordinate of the first hole | 35 |
| Y | Y coordinate of the first hole | -35 |
| Zs | Safety Z coordinate | 2 |
| Z | Surface coordinate | 0 |
| P | Total depth in absolute coordinates | 20 |
| I | Value of each pass | 5 |
| t | Dwell at the bottom | 0 |


| PENETRATION |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 600 |
| S | RPM | 750 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 4 |
| D | Tool offset | 4 |

Once the first hole is programmed, we repeat it in an arc pressing the [ANGULAR REPETITION] key.


In this cycle, we can enter the necessary data for the angular repetition of different shapes by simply changing the window mode. To toggle this window, we press the [TWO-COLOR] key:

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| X 1 | X coordinate of the first hole | 35 |
| Y 1 | Y coordinate of the first hole | -35 |
| 1 | Angular repetition method 1 |  |
| Xc | X coord. of the arc center | 35 |
| Yc | Y coord. of the arc center | -15 |
| N | Number of positions | 2 |
| $\tau$ | Angular distance of the last cycle, referred to the horizontal axis X | -45 |


| MACHINING |  |  |
| :---: | :---: | :---: |
| Zs | Safety Z coordinate | 2 |
| Z | Surface Z coordinate | 0 |
| P | Total pocket depth | 20 |
| t | Dwell at the bottom (seconds) | 5 |
| I | Penetration step | 600 |
| F | Machining feedrate | 750 |
| S | RPM |  |
| P | Clockwise turning direction | 4 |
| T | Number of the tool to be used | 4 |
| D | Tool offset |  |

COORDINATE TRANSFORMATION CYCLES
EXAMPLE: USING THE MIRROR IMAGE CYCLE

FAGOR

CNC 8055
MC

Ref. 0601

### 3.1.4 DRILLING 1 (Linear repetition)

Like before, to go into the DRILLING 1 cycle, we press:


The drill bit will position at the first hole, X55 Y-15, and we will then do a linear repetition.

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| X | X coordinate of the first hole | 55 |
| Y | Y coordinate of the first hole | -15 |
| Zs | Safety Z coordinate | 2 |
| Z | Surface coordinate | 0 |
| P | Total depth in absolute coordinates | 20 |
| I | Value of each pass | 5 |
| t | Dwell at the bottom | 0 |


| PENETRATION |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 600 |
| S | RPM | 750 |
| T | Clockwise turning direction | 4 |
| T | Number of the tool to be used | 4 |
| D | Tool offset |  |



Then, we define a linear repetition by pressing the [LINEAR REPETITION] key.


We program the linear repetition of this second hole by defining the XY coordinate of the last hole of the repetition and the number of holes:

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| X 1 | X coordinate of the first hole | 55 |
| Y 1 | Y coordinate of the first hole | -15 |
| 1 | Linear repetition method 1 |  |
| Xn | X coordinate of the last hole | 55 |
| Yn | Y coordinate of the last hole | 0 |
| N | Number of positions | 2 |


| DRILLING |  |  |
| :---: | :---: | :---: |
| Zs | Safety Z coordinate | 2 |
| $Z$ | Surface Z coordinate | 0 |
| P | Total pocket depth | 20 |
| t | Dwell at the bottom (seconds) | 0 |
| I | Penetration step | 5 |
| F | Machining feedrate | 750 |
| S | RPM |  |
| ( | Clockwise turning direction | 4 |
| T | Number of the tool to be used | 4 |
| D | Tool offset |  |

COORDINATE TRANSFORMATION CYCLES


FAGOR

CNC 8055
MC

Ref. 0601

### 3.1.5 DRILLING 1 (angular repetition)

To go into the DRILLING 1 cycle, we press:


The drill bit will position at the third hole, X55 Y15, and we will then do an angular repetition.

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| X | X coordinate of the first hole | 55 |
| Y | Y coordinate of the first hole | 15 |
| Zs | Safety Z coordinate | 2 |
| Z | Surface coordinate | 0 |
| P | Total depth in absolute coordinates | 20 |
| I | Value of each pass | 5 |
| t | Dwell at the bottom | 0 |


| PENETRATION |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 600 |
| S | RPM | 750 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 4 |
| D | Tool offset | 4 |

Once the cycle of the third hole is filled in, we define an angular repetition by pressing the [ANGULAR REPETITION] key.


In this cycle, we can enter the necessary data for the angular repetition of different shapes by simply changing the window mode. To toggle this window, we press the [TWO-COLOR] key:

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| X 1 | X coordinate of the first hole | 55 |
| Y 1 | Y coordinate of the first hole | 15 |
| 1 | Angular repetition method 1 |  |
| Xc | X coord. of the arc center | 35 |
| Yc | Y coord. of the arc center | 15 |
| N | Number of positions | 3 |
| $\tau$ | Angular distance of the last cycle, referred to the horizontal axis X | 90 |


| MACHINING |  |  |
| :---: | :---: | :---: |
| Zs | Safety Z coordinate | 2 |
| Z | Surface Z coordinate | 0 |
| P | Total pocket depth | 20 |
| t | Dwell at the bottom (seconds) | 0 |
| I | Penetration step | 5 |
| F | Machining feedrate | 600 |
| S | RPM | 750 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 4 |
| D | Tool offset | 4 |

COORDINATE TRANSFORMATION CYCLES
EXAMPLE: USING THE MIRROR IMAGE CYCLE

FAGOR

CNC 8055
MC

Ref. 0601

### 3.1.6 MIRROR IMAGE

After all the holes have been programmed, we do a mirror image of them to obtain the left side. Doing that requires a mirror image on $X$


We press the [ISO] key and use the [LEVEL CYCLE] key to find the MIRROR IMAGE cycle (Level 5).


We apply the mirror image function by changing the sign of the coordinates of the selected axis.

| CONDITIONS |  |  |
| :---: | :---: | :---: |
| NEW | Axis upon which mirror image is applied. | X |

We press the [PPROG] key and insert that cycle into the program by pressing [ENTER].
When applying a mirror image function, we must repeat the portion of the program to be copied; in other words, we must set some labels indicating the beginning and end of the repetition and then give the command RPT:

```
N10 ;---- W select the window corresponding to the labels using the [BICOLOR] key and pressing RPT -----[ENTER].
```

| PROGRAM |  |
| :---: | :---: |
| N1 | Label located above the first machining operation to be repeated |
| N2 | Label located under the last machining operation to be repeated |
| RTP | Command located under the MIRROR IMAGE cycle |

Then, the program looks like this:

| CYCLES |
| :--- |
| 1.- POSITIONING 1 |
| 2 .- PROFILE MILLING |
| 3.- RECTANGULAR POCKET |
| N1;\} |
| 4.- DRILLING $1+$ POSIT. IN ARC 1 |
| 5 .- DRILLING 1 + POSIT. LINEAR |
| 6.- DRILLING $1+$ POSIT. IN ARC 1 |
| N2;\} |
| G10G11;\} MIRROR IMAGE |
| (RPT N1,N2)N1;\} |
| 7.- POSITIONING 1 |

### 3.1.7 PROGRAM SIMULATION

1. We position the red cursor on the first cycle of the program and then press [GRAPHICS].
2. Then, we press [RESET] and then [START].


## 3.

COORDINATE TRANSFORMATION CYCLES


FAGOR


CNC 8055
MC

### 3.2 EXAMPLE: USING THE THREE MIRROR IMAGE COMMANDS

To make the following part:


The following example uses the three commands for mirror image and pattern rotation. We will use the following tools:

| Operations | Tools |
| :---: | :---: |
| Profile milling | End mill 05 T8 D8 |

After creating the part-program and performing the positioning, we make this part by following these steps:

## FAGOR

### 3.2.1 PROFILE MILLING

To fill in the PROFILE MILLING cycle, we press [F3]. Then, we press [LEVEL CYCLE] to switch from level 1 to level 2 , where we can draw the profile to be contoured using the PROFILE EDITOR.


We select the starting point in XY coordinates, assign a number to the drawing and press [RECALL]:

| STARTING POSITION |  |  |
| :---: | :---: | :---: |
| X | Starting point on the X axis | 130 |
| Y | Starting point on the Y axis | 80 |
|  | Profile | 5 |

Once on the screen of the PROFILE EDITOR, we draw the desired geometry:

PROFILE PROGRAMMING

| STARTING POINT | X1: 130 | Y1: 80 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| STRAIGHT | X2: 100 | Y2: 80 |  |  |
| CLOCKWISE ARC | X2: 80 | Y2: 100 | XC: 100 | YC: 100 |
| STRAIGHT | X2: 80 | Y2: 130 |  |  |
| STRAIGHT | X2: 60 | Y2: 130 |  |  |
| STRAIGHT | X2: 60 | Y2: 100 |  |  |
| COUNTERCLOCKWISE | X2: 100 | Y2: 60 | XC: 100 | YC: 100 |
| ARC |  |  |  |  |
| STRAIGHT | X2: 130 | Y2: 60 |  |  |
| STRAIGHT | X2: 130 | Y2: 40 |  |  |
| STRAIGHT | X2: 100 | Y2: 40 |  |  |
| CLOCKWISE ARC | X2: 40 | Y2: 100 | XC: 100 | YC: 100 |
| STRAIGHT | X2: 40 | Y2: 130 |  |  |
| STRAIGHT | X2: 20 | Y2: 130 |  |  |
| STRAIGHT | X2: 20 | Y2: 100 |  |  |
| COUNTERCLOCKWISE | X2: 100 | Y2: 20 | XC: 100 | YC: 100 |
| ARC | X2: 130 | Y2: 20 |  |  |
| STRAIGHT | X2: 130 | Y2: 0 |  |  |
| STRAIGHT | X2: 100 | Y2: 0 |  |  |
| STRAIGHT | X2: 0 | Y2: 100 | XC: 100 | YC: 100 |
| CLOCKWISE ARC | X2: 0 | Y2: 130 |  |  |
| STRAIGHT | X2: 130 | Y2: 130 |  |  |
| STRAIGHT | X2: 130 | Y2: 80 |  |  |
| STRAIGHT |  |  |  |  |

## FAGOR

## $\square \square \square$ Examples manual

Geometry of the example in the PROFILE EDITOR


After drawing the contour of the figure, we save the drawing in the PROFILE MILLING cycle and fill in the rest of the data:

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| Zs | Safety Z coordinate | 2 |
| Z | Surface coordinate | 0 |
| P | Total depth in absolute coordinates | 5 |
| I | Value of each pass | 2 |
| Fz | In feed | 100 |


| ROUGHING |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 8 |
| D | Tool offset | 8 |
| Without tool compensation |  |  |


| FINISHING |  |  |
| :---: | :---: | :---: |
| F | Finishing feedrate | 0 |
| S | RPM | 0 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 0 |
| D | Tool offset | 0 |
| $\delta$ | Finishing stock | 0 |

CNC 8055
MC

Ref. 0601

### 3.2.2 MIRROR IMAGES

We first do a mirror image of this drawing in $X$, then in $Y$ and finally in $X Y$ to complete all four quadrants of the tile.


We press the [ISO] key and use the [LEVEL CYCLE] key to find the MIRROR IMAGE cycle (Level 5).


Mirror image of the drawing in X .

| CONDITIONS |  |  |
| :---: | :---: | :---: |
| NEW | Axis upon which mirror image is applied. | X |

We press the [PPROG] key and insert that cycle into the program by pressing [ENTER]. We must insert the PROFILE MILLING cycle again under the mirror image cycle so the geometry can be repeated, but now in the corresponding quadrant.

Mirror image of the drawing in Y .

| CONDITIONS |  |  |
| :---: | :---: | :---: |
| NEW | Axis upon which mirror image is applied. | Y |

Press [PPROG] and [ENTER]. Enter the PROFILE MILLING cycle again
Mirror image of the drawing in XY.

| CONDITIONS |  |  |
| :---: | :---: | :---: |
| NEW | Axis upon which mirror image is applied. | XY |

Press [PPROG] and [ENTER]. Enter the PROFILE MILLING cycle again

### 3.2.3 PATTERN ROTATION

The next step is to program the center square, but this square is rotated 45 degrees around its geometrical center; therefore, since we will be drawing the square horizontally, we must indicate in the program a previous 45 degree rotation.


We press the [ISO] key and use the [LEVEL CYCLE] key to find the PATTERN ROTATION cycle (Level 7).


| CONDITIONS |  |  |
| :---: | :---: | :---: |
| New |  |  |
| $\tau 0$ | Rotation angle | 45 |
| Xo | X position of the rotation center | 0 |
| Yo | Y position of the rotation center | 0 |

We save the cycle in the program, machine the inside square using the PROFILE MILLING cycle

### 3.2.4 PROFILE MILLING

To fill in the PROFILE MILLING cycle, we press [F3]. Then, we press [LEVEL CYCLE] to switch from level 1 to level 2 , where we can draw the profile to be contoured using the PROFILE EDITOR.


We select the starting point in XY coordinates, assign a number to the drawing and press [RECALL]:

| STARTING POSITION |  |  |
| :---: | :---: | :---: |
| X | Starting point on the X axis | 20 |
| Y | Starting point on the Y axis | 0 |
|  | Profile | 6 |

Once inside the PROFILE EDITOR, we draw the desired geometry.

## PROFILE PROGRAMMING

| STARTING POINT | X1: 20 | Y1: 0 |
| :--- | :--- | :--- |
| STRAIGHT | X2: 20 | Y2: 20 |
| STRAIGHT | X2: -20 | Y2: 20 |
| STRAIGHT | X2: -20 | Y2: -20 |
| STRAIGHT | X2: 20 | Y2: -20 |
| STRAIGHT | $X 2: 20$ | $Y 2: 0$ |

Geometry of the example in the PROFILE EDITOR


After drawing the contour of the figure, we save the drawing in the PROFILE MILLING cycle and fill in the rest of the data:

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| Zs | Safety Z coordinate | 2 |
| Z | Surface coordinate | 0 |
| P | Total depth in absolute coordinates | 5 |
| I | Value of each pass | 2 |
| Fz | In feed | 100 |

COORDINATE TRANSFORMATION CYCLES

| ROUGHING |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 8 |
| D | Tool offset | 8 |
| Without tool compensation |  |  |


| FINISHING |  |  |
| :---: | :---: | :---: |
| F | Finishing feedrate | 0 |
| S | RPM | 0 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 0 |
| D | Tool offset | 0 |
| $\delta$ | Finishing stock | 0 |

After machining the square, we cancel the pattern rotation. We do this in the turning cycle itself by selecting the CANCEL option.

The program will look like this:

| CYCLES |
| :--- |
| 1.- POSITIONING 1 |
| 2.- PROFILE MILING |
| G10G11;\} MIRROR IMAGE |
| 3.- PROFILE MILLING |
| G10G12;\} MIRROR IMAGE |
| 4.- PROFILE MILLING |
| G10G11G12;\} MIRROR IMAGE |
| 5 .- PROFILE MILLING |
| TURN, another 45o (0,0) |
| 6 .- PROFILE MILLING |
| G73;\} PATTERN ROTATION |
| 7.- POSITIONING 1 |

## FAGOR

## CNC 8055

MC

### 3.2.5 PROGRAM SIMULATION

1. We position the red cursor on the first cycle of the program, in this case POSITIONING 1 , and then press [GRAPHICS].
2. Then, we press [RESET] and then [START].


## 3.




FAGOR


CNC 8055
MC

### 3.3 EXAMPLE: PATTERN ROTATION

To make the following part:


We will use the following tools:

| Operations | Tools |
| :---: | :---: |
| Contour machining (roughing) | Flat endmill Ø6 T1 D1 |
| Contour machining (finishing) | Flat endmill Ø4 T2 D2 |
| Drilling | Drill bit Ø10 T4 D4 |

After creating the part-program and performing the positioning, we make this part by following these steps:

### 3.3.1 PROFILE MILLING

To fill in the PROFILE MILLING cycle, we press [F3]. Then, we press [LEVEL CYCLE] to switch from level 1 to level 2, where we can draw the profile to be contoured using the PROFILE EDITOR.


We select the starting point in XY coordinates, assign a number to the drawing and press [RECALL]:

| STARTING POSITION |  |  |
| :---: | :---: | :---: |
| X | Starting point on the X axis | 99.496 |
| Y | Starting point on the Y axis | -21.336 |
|  | Profile | 7 |

Once inside the PROFILE EDITOR, we draw the desired geometry.

PROFILE PROGRAMMING

| STARTING POINT | X1: 99.496 | Y1: -21.336 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| COUNTERCLOCKWISE | X2: 105.485 | Y2: -17.256 | R: 5 |  |
| ARC |  |  |  |  |
| COUNTERCLOCKWISE | X2: 105.485 | Y2: 17.256 | XC: 0 | YC: 0 |
| ARC |  |  |  |  |
| COUNTERCLOCKWISE | X2: 99.496 | Y2: 21.336 | R: 5 |  |
| CLOCKWISE ARC | X2: 68.226 | Y2: 75.497 | R: 32.846 |  |

Geometry of the example in the PROFILE EDITOR


## FAGOR

After drawing the contour of the figure, we save the drawing in the PROFILE MILLING cycle and fill in the rest of the data:

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| Zs | Safety Z coordinate | 2 |
| Z | Surface coordinate | 0 |
| P | Total depth in absolute coordinates | 30 |
| I | Value of each pass | 2 |
| Fz | In feed | 100 |


| ROUGHING |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 1 |
| D | Tool offset | 1 |
| Right hand tool radius compensation |  |  |


| FINISHING |  |  |
| :---: | :---: | :---: |
| F | Finishing feedrate | 1000 |
| S | RPM | 1000 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 2 |
| D | Tool offset | 2 |
| $\delta$ | Finishing stock | 0.2 |

CNC 8055
MC

### 3.3.2 PATTERN ROTATION

Then, we cancel the pattern rotation:


We press the [ISO] key and use the [LEVEL CYCLE] key to find the PATTERN ROTATION cycle (Level 7).


We must select the additive option to make the angle incremental and to complete the geometry.
We have the cycle in the program and proceed to define labels. These labels serve to specify which portion (from where to where) will be repeated.


After entering the label N 2 , we give the repetition command by accessing the ISO cycle again Then, cancel the rotation and insert it into the program.

### 3.3.3 CIRCULAR POCKETS

After carrying out the positioning, we program the cycles for the two pockets in the center. These pockets are identical, just their radius and depth are different.


| GENERAL CONDITIONS |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  | POCKET 1 | POCKET 2 |
| Xc | Pocket center in X | 0 | 0 |
| Yc | Pocket center in Y | 0 | 0 |
| R | Pocket radius | 35.61 | 22.869 |
| Zs | Safety Z coordinate | 2 | 2 |
| Z | Surface coordinate | 0 | 0 |
| P | Total depth in absolute coordinates | 15 | 30 |
| I | Value of each pass | 3 | 3 |
| Fz | In feed | 100 | 100 |


| ROUGHING |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| T | Clockwise turning direction |  |
| T | Number of the tool to be used | 1 |
| D | Tool offset | 1 |
| $\beta$ | Penetrating angle | 90 |
| $\square$ | Clockwise machining |  |
| $\Delta$ | Roughing pass | 0 |

CNC 8055
MC

Ref. 0601

| FINISHING |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 2 |
| D | Tool offset | 2 |
| $\theta$ | Tool penetrating angle when finishing | 90 |
| $\square$ | Clockwise machining |  |
| $\delta$ | Finishing stock | 0.2 |
| $\delta \mathbf{N}$ | Excess material in Z | 0.1 |
| N | Number of finishing passes in Z | 1 |

### 3.3.4 DRILLING WITH LINEAR REPETITION



| PENETRATION |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 600 |
| S | RPM | 750 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 4 |
| D | Tool offset | 4 |



Once we filled in the cycle of the second hole and before saving it in the program, we define a linear repetition by pressing the [LINEAR REPETITION] key.


| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| X 1 | X coordinate of the first hole | 51.895 |
| Y 1 | Y coordinate of the first hole | 0 |
| $2 \mathrm{~S}^{5}$ | Linear repetition method 1 |  |
| $\tau 0$ | Line rotation angle | 0 |
| L | Total line length | 31.665 |
| N | Number of positions | 2 |

CNC 8055
MC

| DRILLING |  |  |
| :---: | :---: | :---: |
| Zs | Safety Z coordinate | 2 |
| Z | Surface Z coordinate | 0 |
| P | Total pocket depth | 30 |
| t | Dwell at the bottom (seconds) | 0 |
| I | Penetration step | 5 |
| F | Machining feedrate | 600 |
| S | RPM | 750 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 4 |
| D | Tool offset | 4 |

CNC 8055 MC

### 3.3.5 PATTERN ROTATION

After doing the drilling using linear repetition, we apply a pattern rotation to drill the rest of the holes:


We press the [ISO] key and use the [LEVEL CYCLE] key to find the PATTERN ROTATION cycle (Level 7).


We save the cycle into the program and define the labels, these labels serve to specify which area (from where to where) will be repeated.


When entering the label N4 in the program, we give the repetition command by accessing the ISO cycle again

The definition of the last two labels must be different from the first two, otherwise the repetition will be wrong. That's why N3 and N4 are defined. There is no need to cancel it because it is the last rotation in the program.

Finally, the program will look like this:

## CYCLES

1.- POSITIONING 1

N1;\}
2.- PROFILE MILLING

G73Q60IOJ0;\} PATTERN ROTATION
N2;\}
(RPT N1,N2)N5;\}
G73;\} PATTERN ROTATION
3.- POSITIONING 1

4 .- CIRCULAR POCKET 1
5 .- CIRCULAR POCKET 1
N3; $\}$
6 .- DRILLING 1 + POSIT. LINEAR
G73Q60IOJ0;\} PATTERN ROTATION
N4;\}
(RPT N3,N4)N5;\}

CNC 8055
MC

### 3.3.6 PROGRAM SIMULATION

1. We position the red cursor on the first cycle of the program and then press [GRAPHICS].
2. Then, we press [RESET] and then [START].


## FAGOR

CNC 8055 MC

Ref. 0601

## 2D CYCLES

### 4.1 EXAMPLE: JOINT

The following example uses the 2D POCKET cycle. This cycle serves to machine irregular pockets:


We will use the following tools:

| Operations | Tools |
| :---: | :---: |
| Contour machining (roughing) | Flat endmill Ø6 T1 D1 |
| Contour machining (finishing) | Flat endmill Ø4 T2 D2 |
| Pocket machining (roughing) | Flat endmill Ø6 T1 D1 |
| Pocket machining (finishing) | Flat endmill Ø4 T2 D2 |

After creating the part-program and performing the positioning, we make this part by following these steps:

### 4.1.1 2D PROFILE POCKET

In this part, we will carry out a roughing operation from the outside contour up to the profile of the joint. Then, we will run a finishing pass. To go into the 2D PROFILE POCKET cycle, press [F5].


We select the starting point in XY coordinates, assign a number to the drawing and press [RECALL]:

| STARTING POSITION |  |  |
| :---: | :---: | :---: |
| X | Starting point on the X axis | -85 |
| Y | Starting point on the Y axis | -55 |
|  | Profile | 8 |

The drawing has two profiles, an outside contour indicating the roughing boundaries and a profile of the figure to be machined in relief. If the pocket must be emptied, we will just have to draw the geometry to be emptied. We first draw the outside contour and then define the second profile by pressing the NEW PROFILE key:

## PROFILE PROGRAMMING

| STARTING POINT | X1: -85 | Y1: -55 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STRAIGHT | X2: 85 | Y2: -55 |  |  |  |  |
| STRAIGHT | X2: 85 | Y2: 55 |  |  |  |  |
| STRAIGHT | X2: -85 | Y2: 55 |  |  |  |  |
| STRAIGHT | X2: -85 | Y2: -55 |  |  |  |  |
| STARTING POINT | X1: -63 | Y1: 0 |  |  |  |  |
| COUNTERCLOCKWISE ARC | XC: -42 | YC: 0 | R: 21 |  |  |  |
| STRAIGHT | TANG: Y |  |  |  |  |  |
| COUNTERCLOCKWISE ARC | XC: 0 | YC: 0 | R: 35 | TANG: |  |  |
| STRAIGHT | TANG: Y |  |  |  |  |  |
| COUNTERCLOCKWISE ARC | XC: 42 | YC: 0 | R: 21 | TANG: |  |  |
| STRAIGHT | TANG: Y |  |  |  |  |  |
| COUNTERCLOCKWISE ARC | XC: 0 | YC: 0 | R: 35 | TANG: |  |  |
| STRAIGHT | TANG: Y |  |  |  |  |  |
| COUNTERCLOCKWISE ARC | X2: -63 | Y2: 0 | XC: -42 | YC: 0 | R: 21 | TANG: YES |



After having drawn the geometries, we go back to the 2D PROFILE POCKET cycle to fill in the machining conditions for roughing and finishing:

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| Zs | Safety Z coordinate | 2 |
| Z | Surface coordinate | 0 |
| P | Total depth in absolute coordinates | 14 |
| I | Value of each pass | 3 |
| Fz | Penetration feedrate | 100 |


| ROUGHING |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| T | Clockwise turning direction |  |
| T | Number of the tool to be used | 1 |
| D | Tool offset | 1 |
| $\beta$ | Sideways penetration angle | 90 |
| $\Delta$ | Maximum roughing pass | 0 |


| FINISHING |  |  |
| :---: | :---: | :---: |
| F | Finishing feedrate | 1000 |
| S | RPM | 1000 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 2 |
| D | Tool offset | 2 |
| $\theta$ | Sideways penetration angle | 90 |
| $\delta$ | Finishing stock | 0.2 |
| $\delta z$ | Penetration stock | 0.1 |
| N | Number of penetration passes | 1 |

CNC 8055
MC

Ref. 0601

## $\square \square \square$ Examples manual

### 4.1.2 CIRCULAR POCKETS

We then add the three circular pocket cycles to the program. We first program the circular pocket of the center, then the left one and finally the right one.


| GENERAL CONDITIONS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | POCKET <br> 1 | POCKET <br> 2 | POCKET <br> 3 |
| Xc | Pocket center in X | 0 | -42 | 42 |
| Yc | Pocket center in Y | 0 | 0 | 0 |
| R | Pocket radius | 21 | 10.5 | 10.5 |
| Zs | Safety Z coordinate | 2 | 2 | 2 |
| Z | Surface coordinate | 0 | 0 | 0 |
| P | Total depth in absolute coordinates | 14 | 14 | 14 |
| I | Value of each pass | 3 | 3 | 3 |
| Fz | In feed | 100 | 100 | 100 |

The machining conditions are the same for the three pockets:

| ROUGHING |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| T | Clockwise turning direction |  |
| T | Number of the tool to be used | 1 |
| D | Tool offset | 1 |
| $\beta$ | Penetrating angle | 90 |
| $\square$ | Clockwise machining |  |
| $\Delta$ | Roughing pass | 0 |

CNC 8055
MC

Ref. 0601

| FINISHING |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| (7) | Clockwise turning direction |  |
| T | Number of the tool to be used | 2 |
| D | Tool offset | 2 |
| $\theta$ | Tool penetrating angle when finishing | 90 |
| $\square$ | Clockwise machining |  |
| $\delta$ | Finishing stock | 0.2 |
| $\delta z$ | Excess material in Z | 0.1 |
| N | Number of finishing passes in Z | 1 |

And last, we program a positioning to move the tool to the safety distance in Z .
The structure of the program is:

| CYCLES |
| :--- |
| 1.- POSITIONING 1 |
| 2.- 2D PROFILE POCKET |
| 3.- CIRCULAR POCKET 1 |
| 4.- CIRCULAR POCKET 1 |
| 5.- CIRCULAR POCKET 1 |
| 6.- POSITIONING 1 |
|  |

### 4.1.3 PROGRAM SIMULATION

1. We position the red cursor on the first cycle of the program and then press [GRAPHICS].
2. Then, we press [RESET] and then [START].


FAGOR

### 4.2 EXAMPLE: CAM

To make the following part:

## 4.

## Sヨาวคว ם乙 <br> EXAMPLE: CAM



We will use the following tools:

| Operations | Tools |
| :---: | :---: |
| 2D pockets (roughing) | End mill Ø6 T1 D1 |
| 2D pockets (finishing) | End mill Ø4 T2 D2 |
| Drilling | Drill bit Ø12 T9 D9 |
| Circular pocket (roughing) | End mill Ø6 T1 D1 |
| Circular pocket (finishing) | End mill Ø4 T2 D2 |

After creating the part-program and performing the positioning, we make this part by following these steps:

## FAGOR

CNC 8055
MC

### 4.2.1 2D PROFILE POCKETS

To go into the 2D PROFILE POCKET cycle, press [F5].


We select the starting point in XY coordinates, assign a number to the drawing and press [RECALL]:

| STARTING POSITION |  |  |
| :---: | :---: | :---: |
| X | Starting point on the X axis | -50 |
| Y | Starting point on the Y axis | -70 |
|  | Profile | 9 |

First of all, we machine the raw stock until a circular relief is obtained, to do this, first we have to draw the following geometry inside the first 2D PROFILE POCKET cycle:

PROFILE PROGRAMMING

| STARTING POINT | X1: -50 | Y1: -70 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| STRAIGHT | X2: 120 | Y2: -70 |  |  |  |
| STRAIGHT | X2: 120 | Y2: 70 |  |  |  |
| STRAIGHT | X2: -50 | Y2: 70 |  |  |  |
| STRAIGHT | X2: -50 | Y2: -70 |  |  |  |
| COUNTERCLOCKWISE | X1: -25 | Y1: 0 | XC: 0 | YC: 0 | R: 25 |

This drawing defines the outside contour that represents the raw stock and the circular relief inside the part:


| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| Zs | Safety Z coordinate | 2 |
| Z | Surface coordinate | 0 |
| P | Total depth in absolute coordinates | 10 |
| I | Value of each pass | 3 |
| Fz | Penetration feedrate | 100 |

## FAGOR

Geometry of the example in the PROFILE EDITOR


GENERAL CONDITIONS

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| Zs | Safety Z coordinate | 2 |
| Z | Surface coordinate | 0 |
| P | Total depth in absolute coordinates | 30 |
| I | Value of each pass | 3 |
| FZ | Penetration feedrate | 100 |


| ROUGHING |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 1 |
| D | Tool offset | 1 |
| $\beta$ | Sideways penetration angle | 90 |
| $\Delta$ | Maximum roughing pass | 0 |


| FINISHING |  |  |
| :---: | :---: | :---: |
| F | Finishing feedrate | 1000 |
| S | RPM | 1000 |
| r | Clockwise turning direction |  |
| T | Number of the tool to be used | 2 |
| D | Tool offset | 2 |
| $\theta$ | Sideways penetration angle | 90 |
| $\delta$ | Finishing stock | 0.2 |
| $\delta z$ | Penetration stock | 0.1 |
| N | Number of penetration passes | 1 |

We insert the cycle in the program with the [PPROG] key and call the 2D PROFILE POCKET cycle again to do the next pocket.

| STARTING POSITION |  |  |
| :---: | :---: | :---: |
| X | Starting point on the X axis | 25 |
| Y | Starting point on the Y axis | 0 |
|  | Profile | 11 |

Once on the screen of the PROFILE EDITOR, we draw the desired geometry:

PROFILE PROGRAMMING

| STARTING POINT | X1:25 | Y1:0 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| COUNTERCLOCKWISE | X2: 21.22 | Y2: 13.21 | XC: 0 | YC: 0 | R: 25 |
| ARC |  |  |  |  | TANG: YES |
| CLOCKWISE ARC | X2: 29.65 | Y2: 28.5 | R: 10 | TA |  |
| CLOCKWISE ARC | X2: 63.76 | Y2: 17.66 | R: 58 |  |  |
| CLOCKWISE ARC | X2: 64.88 | Y2: 8.95 | R: 6 |  |  |


| COUNTERCLOCKWISE | X2： 64.88 | Y2：-8.95 | XC： 75.65 | YC： 0 | R： 14 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ARC |  |  |  |  |  |
| CLOCKWISE ARC | X2： 63.76 | Y2：-17.66 | R： 6 |  |  |
| CLOCKWISE ARC | X2： 29.65 | Y2：-28.5 | R： 58 |  |  |
| CLOCKWISE ARC | X2： 21.22 | Y2：-13.21 | R： 10 |  |  |
| COUNTERCLOCKWISE X2： 25 Y2： 0 XC： 0 YC： 0 | R： 25 |  |  |  |  |
| ARC |  |  |  |  |  |

## 4.

## Sヨาวィว םて <br> EXAMPLE：CAM

ARC


| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| Zs | Safety Z coordinate | 2 |
| Z | Surface coordinate | 0 |
| P | Total depth in absolute coordinates | 30 |
| I | Value of each pass | 3 |
| Fz | Penetration feedrate | 100 |


| ROUGHING |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 1 |
| D | Tool offset | 1 |
| $\beta$ | Sideways penetration angle | 90 |
| $\Delta$ | Maximum roughing pass | 0 |


| FINISHING |  |  |
| :---: | :---: | :---: |
| F | Finishing feedrate | 1000 |
| S | RPM | 1000 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 2 |
| D | Tool offset | 2 |
| $\theta$ | Sideways penetration angle | 90 |
| $\delta$ | Finishing stock | 0.2 |
| $\delta z$ | Penetration stock | 0.1 |
| N | Number of penetration passes | 1 |

CNC 8055
MC

Ref. 0601

### 4.2.2 DRILLING

To go into the DRILLING 1 cycle, we press:


Drilling definition:

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| X | X coordinate of the hole | 75.646 |
| Y | Y coordinate of the hole | 0 |
| Zs | Safety Z coordinate | 2 |
| Z | Surface coordinate | 0 |
| P | Total depth in absolute coordinates | 30 |
| I | Value of each pass | 5 |
| t | Dwell at the bottom | 0 |


| PENETRATION |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 600 |
| S | RPM | 750 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 9 |
| D | Tool offset | 9 |

### 4.2.3 CIRCULAR POCKET 1

To go into the CIRCULAR POCKET 1 cycle, we press [F7]. Then, we press [LEVEL CYCLE] until reaching level 3.


The CIRCULAR POCKET 1 cycle always begins at its center.

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| Xc | Pocket center in X | 0 |
| Yc | Pocket center in Y | 0 |
| R | Pocket radius | 15 |
| Zs | Safety Z coordinate | 2 |
| $Z$ | Surface coordinate | 0 |
| P | Total depth in absolute coordinates | 30 |
| I | Value of each pass | 3 |
| Fz | In feed | 100 |


| ROUGHING |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 1 |
| D | Tool offset | 1 |
| $\beta$ | Penetrating angle | 90 |
| $\square$ | Clockwise machining |  |
| $\Delta$ | Roughing pass | 0 |


| FINISHING |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 2 |
| D | Tool offset | 2 |
| $\theta$ | Tool penetrating angle when finishing | 90 |
| $\boldsymbol{H}$ | Clockwise machining |  |
| $\delta$ | Finishing stock | 0.2 |
| $\delta z$ | Excess material in Z | 0.1 |
| N | Number of finishing passes in Z | 1 |

CNC 8055 MC

```
■ ロ ■ Examples manual
```

The structure of the program is:

## 4.

2D CYCLES EXAMPLE: CAM

## FAGOR

CNC 8055
MC

Ref. 0601

## CYCLES

1.- POSITIONING 1
2.-2D PROFILE POCKET

3 .- 2D PROFILE POCKET
4.-2D PROFILE POCKET

5 .- DRILLING 1
6 .- CIRCULAR POCKET 1
7.- POSITIONING 1

### 4.2.4 PROGRAM SIMULATION

1. We position the red cursor on the first cycle of the program and then press [GRAPHICS].
2. Then, we press [RESET] and then [START].


## 3D CYCLES

### 5.1 INTRODUCTION

The 3D cycles are programmed the same way as the 2D cycles. The difference is that each profile defined in the main $X Y$ plane has its own depth profile $X Z$ or $Y Z$. The cycle used for 3D pockets has several boxes to define the part number and the different depth profiles:

| Parameters | Description |
| :---: | :---: |
| POCK. 3D | Name of the Pocket |
| P. XY | XY plane profile file |
| P. Z1 | Z-profile file for the 1st XY profile |
| P. Z2 | Z-profile file for the 2nd XY profile |
| P. Z3 | Z-profile file for the 3rd XY profile |
| P. Z4 | Z-profile file for the 4th XY profile |

The first two boxes indicate the part number and the number for the XY drawing of the 3D pocket respectively. Boxes PZ1, PZ2, PZ3 and PZ4 are the depth profiles in the programming order of the XY profiles.

The 3D pocket involves the execution of the three machining operations. First, we run a previous roughing operation of the geometry in the plane; we then do a semi-finishing operation that is like a fine roughing and, finally, we carry out the finishing operation. The three operations are optional and may be omitted by programming all the values of the desired operation at zero.

| Parameters | Description |
| :---: | :---: |
| I 1 | Maximum penetration pass when roughing |
| I 2 | Maximum Z pass when semi-finishing |

FAGOR

CNC 8055
MC

Ref. 0601

### 5.2 EXAMPLE: TOROID

To make the next part, two 3D cycles will be used, the first one to achieve the outside relief and the second one to empty the inside.



We will use the following tools:

| Operations | Tools |
| :---: | :---: |
| Machining of the 3D pocket (roughing) | End mill Ø6 T1 D1 |
| Machining of the 3D pocket (finishing) | End mill Ø4 T2 D7 |

To make the part, we follow these steps:

## FAGOR

CNC 8055
MC

Ref. 0601

### 5.2.1 3D PROFILE POCKETS

To fill in the 3D POCKET cycle, we press [F5]. Then, we press [LEVEL CYCLE] to go from level 1 to level 2.
In the 3D cycle, we define first the geometry of the XY plane as if it were a 2D machining operation and then, inside the same cycle, we define the depth profiles for each profile defined in XY. These profiles are defined by making the starting points of each geometry coincide.


First, we assign a number to the pocket and then a number to each profile. We do this by following a logical numeric order in order not to mix drawings of different programs. We assign to XY profile the tens of the number chosen for the pocket and, from then on, we assign consecutive numbers to each profile:

| POCKET AND PROFILE NUMBERING |  |  |
| :---: | :---: | :---: |
| POCK. <br> 3D | Name of the Pocket | 1 |
| P. XY | XY plane profile file | 11 |
| P. Z1 | Z-profile file for the 1st XY profile | 12 |
| P. Z2 | Z-profile file for the 2nd XY profile | 13 |
| P. Z3 | Z-profile file for the 3rd XY profile | 0 |
| P. Z4 | Z-profile file for the 4th XY profile | 0 |

In the PXY box, we draw the XY profile of the pocket with an outside profile since we are going to machine a relief. First we draw the outside contour and then define the second profile of the island by pressing the NEW PROFILE key:

## PROFILE PROGRAMMING

| STARTING POINT | X1: -60 | Y1: 0 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| STRAIGHT | X2: 0 | Y2: 60 |  |  |  |
| STRAIGHT | X2: 60 | Y2: 60 |  |  |  |
| STRAIGHT | X2: 60 | Y2: -60 |  |  |  |
| STRAIGHT | X2: -60 | Y2: -60 |  |  |  |
| STRAIGHT | X2: -60 | Y2: 0 |  |  |  |
| STARTING POINT | X1: -50 | Y1: 0 |  | YC: 0 | R: 50 |

Geometry of the example in the PROFILE EDITOR


In the box for PZ1, we draw the depth profile for the outside contour. This depth profile is drawn from up down because it is for emptying:

PROFILE PROGRAMMING

| STARTING POINT | X1: -60 | Z1: -10 |
| :--- | :--- | :--- |
| STRAIGHT | X2: -60 | Z2: -20 |

Geometry of the example in the PROFILE EDITOR

After programming the profiles, we fill in the section that indicates the machining conditions:

Ref. 0601

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| X | Starting point on the X axis | -60 |
| Y | Starting point on the Y axis | 0 |
| Zs | Safety Z coordinate | 2 |
| Z | Surface coordinate | 0 |
| P | Total depth in absolute coordinates | 10 |
| I 1 | Maximum penetration pass when roughing | 3 |
| I 2 | Maximum Z pass when semi-finishing | 1 |
| Fz | Penetration feedrate | 100 |


| STARTING POINT | X1: -50 | Z1: -10 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| CLOCKWISE ARC | X2: -40 | Z2: 0 | XC: -40 | ZC: -10 | R: 10 |

Geometry of the example in the PROFILE EDITOR


| ROUGHING |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| 7 | Clockwise turning direction |  |
| T | Number of the tool to be used | 1 |
| D | Tool offset | 1 |
| $\beta$ | Sideways penetration angle | 90 |
| $\Delta$ | Maximum roughing pass | 0 |


| FINISHING |  |  |
| :---: | :---: | :---: |
| F | Finishing feedrate | 500 |
| S | RPM | 2000 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 7 |
| D | Tool offset | 7 |
| R | Tool radius | 3 |
| $\delta$ | Finishing stock | 0.1 |
| $\varepsilon$ | Finishing pass | 1 |
|  | Zigzag finishing |  |

To machine the inside of the toroid, we have to define another 3D pocket; therefore, we access the 3D PROFILE POCKET cycle again and we make the XY profile to empty it.

| POCKET AND PROFILE NUMBERING |  |  |
| :---: | :---: | :---: |
| POCK. <br> 3D | Name of the Pocket | 2 |
| P. XY | XY plane profile file | 21 |
| P. Z1 | Z-profile file for the 1st XY profile | 22 |
| P. Z2 | Z-profile file for the 2nd XY profile | 23 |
| P. Z3 | Z-profile file for the 3rd XY profile | 0 |
| P. Z4 | Z-profile file for the 4th XY profile | 0 |

Since it is an emptying operation, we only have to define the inside geometry and later apply its corresponding depth profile to it. This circle corresponds to the intermediate radius between the outside and the inside circle.

## PROFILE PROGRAMMING

COUNTERCLOCKWISE
X1:-40
CIRCLE

Geometry of the example in the PROFILE EDITOR


Being an emptying operation, this depth profile is defined from up down and the starting point of the $X$ coordinate must coincide with the $X$ of the starting point of the previous $X Y$ profile; this way, this depth profile will be used for the whole $X Y$ process.

## PROFILE PROGRAMMING

STARTING POINT
CLOCKWISE ARC
X1: -40
Z1: 0
CNC 8055
MC

Ref. 0601

## $\square \square \square$ Examples manual

Geometry of the example in the PROFILE EDITOR


After programming the profiles, we fill in the section that indicates the machining conditions:

| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| X | Starting point on the X axis | -60 |
| Y | Starting point on the Y axis | 0 |
| Zs | Safety Z coordinate | 2 |
| Z | Surface coordinate | 0 |
| P | Total depth in absolute coordinates | 10 |
| I 1 | Maximum penetration pass when roughing | 3 |
| I 2 | Maximum Z pass when semi-finishing | 1 |
| Fz | Penetration feedrate | 100 |


| ROUGHING |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| T | Clockwise turning direction |  |
| T | Number of the tool to be used | 1 |
| D | Tool offset | 1 |
| $\beta$ | Sideways penetration angle | 90 |
| $\Delta$ | Maximum roughing pass | 0 |


| FINISHING |  |  |
| :---: | :---: | :---: |
| F | Finishing feedrate | 500 |
| S | RPM | 2000 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 7 |
| D | Tool offset | 7 |
| R | Tool radius | 3 |
| $\delta$ | Finishing stock | 0.1 |
| $\varepsilon$ | Finishing pass | 1 |
|  | Zigzag finishing |  |

CNC 8055
MC

### 5.2.2 PROGRAM SIMULATION

1. We position the red cursor on the first cycle of the program and then press [GRAPHICS].
2. Then, we press [RESET] and then [START].


## 5.

Sヨาวคว ロย
वIOயOL: $\exists \mathrm{l} d W \forall X \exists$

FAGOR


CNC 8055
MC

Ref. 0601

### 5.3 EXAMPLE: IGLOO

Programming an IGLOO requires intersecting profiles because the geometry has three different depth profiles, the one for the dome, the one for the corridor and the one for the entrance. This intersection of profiles is drawn in the box for XY profiles and, to do that, we use the BOOLEAN PROFILE INTERSECTION system. The CNC will adapt each XY profile to its corresponding depth profile.


We will use the following tools:

| Operations | Tools |
| :---: | :---: |
| Machining of the 3D pocket (roughing) | End mill Ø6 T1 D1 |
| Machining of the 3D pocket (finishing) | End mill Ø4 T2 D7 |

To make the part, we follow these steps:

### 5.3.1 3D PROFILE POCKETS

To fill in the 3D POCKET cycle, we press [F5]. Then, we press [LEVEL CYCLE] to go from level 1 to level 2.
In this example, we will fill in the box for the XY PROFILE and the four depth profiles. The depth profile of the corridor of the igloo must be defined in the work plane YZ because its starting point in XY is on top of it. The machining conditions are programmed generically because they depend on the material used in each case.


First, we assign a number to the whole cycle and then a number to each profile. We do this by following a logical numeric order in order not to mix drawings of different programs. We then assign the tens of the selected number and, from then on, we assign consecutive numbers to each profile.

| POCKET AND PROFILE NUMBERING |  |  |
| :---: | :---: | :---: |
| POCK. <br> 3D | Name of the Pocket | 3 |
| P. XY | XY plane profile file | 30 |
| P. Z1 | Z-profile file for the 1st XY profile | 31 |
| P. Z2 | Z-profile file for the 2nd XY profile | 32 |
| P. Z3 | Z-profile file for the 3rd XY profile | 33 |
| P. Z4 | Z-profile file for the 4th XY profile | 34 |

XY PROFILE:

## PROFILE PROGRAMMING

| STARTING POINT | X1: -70 | Y1: 0 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| STRAIGHT | X2: -70 | Y2: 70 |  |  |  |
| STRAIGHT | X2: 115 | Y2: 70 |  |  |  |
| STRAIGHT | X2: 115 | Y2: -70 |  |  |  |
| STRAIGHT | X2: -70 | Y2: -70 |  |  |  |
| STRAIGHT | X2: -70 | Y2: 0 |  |  |  |
| STARTING POINT | X1: -45 | Y1: 0 |  |  |  |
| CLOCKWISE ARC | X2: -45 | Y2: 0 | XC: 0 | YC: 0 | R: 45 |
| STARTING POINT | X1: 50 | Y1: 22.5 |  |  |  |
| STRAIGHT | X2: 100 | Y2: 22.5 |  |  |  |
| STRAIGHT | X2: 100 | Y2: -22.5 |  |  |  |
| STRAIGHT | X2: 0 | Y2: -22.5 |  |  |  |
| STRAIGHT | X2: 0 | Y2: 22.5 |  |  |  |
| STRAIGHT | X2: 50 | Y2: 22.5 |  |  |  |
| STARTING POINT | X1: 90 | Y1: 0 |  |  |  |
| STRAIGHT | X2: 90 | Y2: 25 |  |  |  |
| STRAIGHT | X2: 110 | Y2: 25 |  |  |  |
| STRAIGHT | X2: 110 | Y2: -25 |  |  |  |
| STRAIGHT | X2: 90 | Y2: -25 |  |  |  |
| STRAIGHT | X2: 90 | Y2: 0 |  |  |  |

## FAGOR

CNC 8055 MC

Geometry of the example in the PROFILE EDITOR


The order these XY geometries are programmed is important because different depth profiles will be programmed respectively and making the starting points in $X$ and in $Y$ coincide.

XZ1 PROFILE:
PROFILE PROGRAMMING

| STARTING POINT | X1: -70 | Z1: 0 |
| :--- | :--- | :--- |
| STRAIGHT | X2: -70 | Z2: -45 |

This profile is completely vertical. It defines the outside pocket and it is programmed from up down:


XZ2 PROFILE:

PROFILE PROGRAMMING

## STARTING POINT

X1: -45 Z1:-45
CLOCKWISE ARC
X2: 0
Z2: 0
XC: 0
ZC: -45
R: 45

It defines the dome of the igloo. Since it is an island, it is defined in XZ from down up:


XZ3 PROFILE:
This is the depth profile for the corridor of the igloo. This depth profile is programmed in YZ.
PROFILE PROGRAMMING
STARTING POINT
Y1: $22.5 \quad$ Z1: -45
COUNTERCLOCKWISE
Y2: 0
Z2: -22.5
YC: 0
ZC: -45
R: 22.5

ARC


## STARTING POINT

X1: $90 \quad$ Z1: -22.5
STRAIGHT
X2: $110 \quad$ Y2: -45

Finally, we will draw the depth profile for the front of the igloo. This depth profile is drawn from up down because it acts as a cutoff of the previous profile:


| GENERAL CONDITIONS |  |  |
| :---: | :---: | :---: |
| X | Starting point on the X axis | 0 |
| Y | Starting point on the Y axis | 0 |
| Zs | Safety Z coordinate | 2 |
| Z | Surface coordinate | 0 |
| P | Total depth in absolute coordinates | 30 |
| I 1 | Maximum penetration pass when roughing | 3 |
| I 2 | Maximum Z pass when semi-finishing | 1 |
| Fz | Penetration feedrate | 100 |


| ROUGHING |  |  |
| :---: | :---: | :---: |
| F | Machining feedrate | 1000 |
| S | RPM | 1000 |
| T | Clockwise turning direction |  |
| T | Number of the tool to be used | 1 |
| D | Tool offset | 1 |
| $\beta$ | Sideways penetration angle | 90 |
| $\Delta$ | Maximum roughing pass | 0 |

CNC 8055
MC

| FINISHING |  |  |
| :---: | :---: | :---: |
| F | Finishing feedrate | 500 |
| S | RPM | 2000 |
| P | Clockwise turning direction |  |
| T | Number of the tool to be used | 7 |
| D | Tool offset | 7 |
| R | Tool radius | 3 |
| $\delta$ | Finishing stock | 0.1 |
| $\varepsilon$ | Finishing pass | 1 |
|  | Zigzag finishing |  |

### 5.3.2 PROGRAM SIMULATION

1. We position the red cursor on the first cycle of the program and then press [GRAPHICS].
2. Then, we press [RESET] and then [START].


CNC 8055 MC



